Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biosystems ; 172: 37-42, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30125625

RESUMO

Methylovorus sp. MP688 is a methylotrophic bacterium that can be used as a pyrroloquinolone quinone (PQQ) producer. To obtain a comprehensive understanding of its metabolic capabilities, we constructed a genome-scale metabolic model (iWZ583) of Methylovorus sp. MP688, based on its genome annotations, data from public metabolic databases, and literature mining. The model includes 772 reactions, 764 metabolites, and 583 genes. Growth of Methylovorus sp. MP688 was simulated using different carbon and nitrogen sources, and the results were consistent with experimental data. A core metabolic essential gene set of 218 genes was predicted by gene essentiality analysis on minimal medium containing methanol. Based on in silico predictions, the addition of aspartate to the medium increased PQQ production by 4.6- fold. Deletion of three reactions associated with four genes (MPQ_1150, MPQ_1560, MPQ_1561, MPQ_1562) was predicted to yield a PQQ production rate of 0.123 mmol/gDW/h, while cell growth decreased by 2.5%. Here, model iWZ583 represents a useful platform for understanding the phenotype of Methylovorus sp. MP688 and improving PQQ production.


Assuntos
Proteínas de Bactérias/genética , Biologia Computacional/métodos , Redes e Vias Metabólicas , Metaboloma , Methylophilaceae/genética , Methylophilaceae/metabolismo , Cofator PQQ/metabolismo , Simulação por Computador , Genoma Bacteriano , Methylophilaceae/crescimento & desenvolvimento , Modelos Biológicos
2.
Braz J Microbiol ; 45(3): 985-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25477935

RESUMO

In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh) gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ). Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Raízes de Plantas/microbiologia , Microbiologia do Solo , Bactérias/genética , Técnicas de Tipagem Bacteriana , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes , Glucose 1-Desidrogenase/genética , Dados de Sequência Molecular , Paquistão , Filogenia , Plantas , Quinonas/análise , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA
3.
Braz. j. microbiol ; 45(3): 985-993, July-Sept. 2014. mapas, tab
Artigo em Inglês | LILACS | ID: lil-727030

RESUMO

In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh) gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ). Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Raízes de Plantas/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Bactérias/genética , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes , Glucose 1-Desidrogenase/genética , Dados de Sequência Molecular , Paquistão , Filogenia , Plantas , Quinonas/análise , Rizosfera , /genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...